
   

   

   

Abstract
‣ Scattering by spherical particle with an arbitrary

amount of concentric layers optionally featuring

spatial dispersion effects is considered;

‣ Several problem statements featuring different

boundary condition sets are examined with a core-

shell particle as an example;

‣ Computer algebra code (symMie) based on the

MATLAB/Octave symbolic engine is implemented

to solve the problem for the user-defined boundary

condition set.

Motivation
Plasmonic particles with scale less than 10 nm are known to exhibit unique scattering properties related to the quantum

spatial dispersion effects [1-3]. These are not accounted for in the majority of electromagnetic solvers that are conventionally

used to simulate scattering. Rigorous evaluation of such structures via i.e. Time-Dependent Density Functional Theory

(TDDFT) is possible but computationally demanding for large particles (𝑑 > 5𝑛𝑚) [4]. Due to the widespread of these

particles in cutting-edge applications [5], several nonlocal-corrected Maxwell-based models were recently proposed in

attempt to interpret dispersive phenomena in terms of classic constitutive equations and boundary conditions (BC). Each

model, i.e. Mie theory in local response approximation (LRA), Drude hydrodynamic theory (HDT), Generalized Nonlocal

Optical Response (GNOR), or approach based on mesoscopic Feibelman formalism implies its own scattering problem

statement involving possibly modified Maxwell equations and BC [1-3,6-8]. Aim of the current work is to demonstrate the

advantages of a computer algebra approach capable of solving scattering by spherical layered particle for the user-defined BC
set employing complete 𝐌

𝑜
𝑒𝑚𝑛, 𝐍

𝑜
𝑒𝑚𝑛, 𝐋

𝑜
𝑒𝑚𝑛 functional basis.

Conclusion
‣ Implemented symbolic framework allows to accurately obtain both analytic and numeric solutions for the stratified

sphere with nonlocal layers. Boundary conditions can be flexibly defined by user via built-in field expansions.

‣ Applications of the proposed symMie tool include, but are not limited to: (a) versatile comparison of the different physical

approaches to the e/m scattering problem; (b) ground for verification of pure numerical high-performance techniques;

(c) estimation of the solution to scattering problem without the need to implement any problem-specific code.

‣ This framework can potentially be expanded to the broader scope of boundary-value problems from any field of

mathematical physics given that it allows analytic solution in terms of expansion to the complete basis function series.
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Notations
‣ We consider plane wave 𝐄𝑖 , 𝐇𝑖 scattering;

‣ 𝐄𝑠, 𝐇𝑠 is the scattered field in 𝐷2;

‣ 𝐄2 = 𝐄𝑖 + 𝐄𝑠, 𝐇2 = 𝐇𝑖 + 𝐇𝑠 is the total field in 𝐷2;

‣ 𝐄𝜁 , 𝐇𝜁 are total fields in 𝐷𝜁 layer;

‣ Within nonlocal layer 𝐄𝜁 = 𝐄𝜁
𝑇 + 𝐄𝜁

𝐿;

‣ 𝐧𝑃 is a unit outward normal to the surface at point 𝑃;

‣ 𝑘 = 2𝜋/𝜆 is a wavenumber in vacuum, 𝜔 = 𝑘𝑐;

‣ 𝜀𝜁 is experimentally measured complex permittivity;

‣ 𝜇𝜁 is permeability; Im 𝜀2 = 0, Im 𝜀𝜁 ≥ 0 .

‣ Radiation condition at infinity (𝐷2) is also imposed.

Local response approximation (LRA)
We consider glass core (𝐷0) and Ag shell (𝐷1) sphere 

in free space (𝐷2) as an example.
curl𝐇𝜁 𝑀 = −𝑗𝑘𝜀𝜁𝐄𝜁 𝑀 , 𝑀 ∈ 𝐷𝜁 ,

curl𝐄𝜁 𝑀 = 𝑗𝑘𝜇𝜁𝐇𝜁 𝑀 ,

div𝐄𝜁 𝑀 = 0, 𝜁 = 0,1,2,

div𝐇𝜁 𝑀 = 0,
𝐄
𝜁
(𝑃) × 𝐧𝑃 = 𝐄

𝜁+1
(𝑃) × 𝐧𝑃 , 𝑃 ∈ 𝜕𝐷

𝜁+1
,

𝐇
𝜁
(𝑃) × 𝐧𝑃 = 𝐇

𝜁+1
(𝑃) × 𝐧𝑃 .

Maxwell equations and boundary conditions are the

same for all layers allowing direct analytic and

numeric solutions for an arbitrary amount of layers.

Computer algebra implementation & results
Within symMie, SVWF set is implemented into symbolic MATLAB/Octave functions, along with 𝐄𝜁 , 𝐇𝜁 expansions (3).

Expansion coefficients 𝑎𝑛, 𝑏𝑛, … , ℎ𝑛, 𝑞𝑛 are then evaluated symbolically using boundary conditions defined by the user.

Some examples of the BC input data are provided below along with the simulation results. It is assumed that
𝐄𝜁 = 𝐄𝜁 𝑅, 𝜃, 𝜑 ,𝐇𝜁 = 𝐇𝜁 𝑅, 𝜃, 𝜑 , with spherical coordinates 𝑅, 𝜃, 𝜑 , origin at the sphere center, 𝑎 = 𝑟1 and 𝑏 = 𝑟2.

𝐷2

𝜕𝐷1
𝜕𝐷2

Spatial dispersion (HDT/GNOR)
Ag shell 𝐷2 is now nonlocal, particle is the same.

curl𝐇2 𝑀 = −𝑗𝑘 𝜀2 +
𝛽2
2 𝜀2

′+𝒹2 𝛾2+𝑗𝜔

𝜔 𝜔+𝑗𝛾2
graddiv 𝐄2 𝑀 ,

curl𝐇1 𝑀 = −𝑗𝑘𝜀1𝐄1 𝑀 , 𝑀 ∈ 𝐷𝜁 ,

curl𝐄𝜁 𝑀 = 𝑗𝑘𝜇𝜁𝐇𝜁 𝑀 ,

div𝐄𝜁 𝑀 = 0, 𝜁 = 0,1,2,

div𝐇𝜁 𝑀 = 0,
𝐄𝜁(𝑃) × 𝐧𝑃 = 𝐄𝜁+1(𝑃) × 𝐧𝑃 , 𝑃 ∈ 𝜕𝐷𝜁+1,
𝐇𝜁(𝑃) × 𝐧𝑃 = 𝐇𝜁+1(𝑃) × 𝐧𝑃 .

𝜀1
′
𝐄1 𝑃 ⋅ 𝐧𝑃 = 𝜀2𝐄2(𝑃) ⋅ 𝐧𝑃 , 𝑃 ∈ 𝜕𝐷2 ,

𝜀1
′
𝐄1 𝑃 ⋅ 𝐧𝑃 = 𝜀0𝐄0(𝑃) ⋅ 𝐧𝑃 , 𝑃 ∈ 𝜕𝐷1 .

Maxwell equation within Ag layer is modified and

additional boundary conditions are imposed on both

metal-dielectric surface boundaries [1,2]. Moreover, for

metal-metal surfaces another form of BC has to be used

[1,7,8]. Hence each configuration of the stratified sphere

can have a unique problem statement making it difficult

to derive an analytic solution in general form.

Cornerstones of the HDT/GNOR
‣ Instead of the 𝐉 𝑀 = 𝜎𝐄(𝑀) another constitutive

relation is used within metal layer (𝐷1) [2,6,7]:
𝛽2

𝜔(𝜔+𝑗𝛾)
+

𝒹

𝑗𝜔
∇ ∇ ⋅ 𝐉 𝑀 + 𝐉 𝑀 = 𝜎D 𝜔 𝑬 𝑀 ;

‣ This leads to the presence of the longitudinal field
curl(𝐄𝜁

𝐿) = 0 in the metal layer along with the

transversal field div(𝐄𝜁
𝑇) = 0, 𝑘𝐿/𝑘𝑇 ~ 10 ÷ 100!

‣ 𝛾 is Drude damping; 𝛽2 = 3/5𝑣𝐹
2 , 𝑣𝐹 – Fermi

velocity; 𝒹 – electron diffusion coeff. (GNOR only);
‣ 𝜀′ = 𝜀 + 𝜔𝑝

2/ 𝜔2 + 𝑗𝛾𝜔 , 𝜔𝑝 – metal plasma freq;

‣ “Hard-wall” boundary condition is imposed.

Fig. 1. Geometry of the model: plane

wave scattering on the sphere with

transparent core (refractive index 1.4,
𝑟1 = 3𝑛𝑚) and silver shell (𝑟2 = 6𝑛𝑚)

is considered.

Fig. 1. Example of the boundary conditions input

data for LRA problem (1) and corresponding

solution (𝜎𝑒𝑥𝑡, 𝜎𝑠𝑐𝑎).

(1)

(2)

(3c)

Solution: Mie theory with longitudinal harmonics
𝐌

𝑜
𝑒𝑚𝑛 = curl 𝐫𝜓

𝑜
𝑒𝑚𝑛 ,

𝐍
𝑜
𝑒𝑚𝑛 = curl(𝐌

𝑜
𝑒𝑚𝑛)/𝑘𝜁 ,

𝐋
𝑜
𝑒𝑚𝑛 = grad 𝐫𝜓

𝑜
𝑒𝑚𝑛 ,

Incident field: 𝐄𝑖 = 𝐸0 σ𝑛=1
∞ 𝑗𝑛

2𝑛+1

𝑛 𝑛+1
𝐌𝑜1𝑛

(1)
− 𝑗𝐍𝑒1𝑛

(1)
, 𝐇𝑖 =

−𝑘2

𝜔𝜇2
𝐸0 σ𝑛=1

∞ 𝑗𝑛
2𝑛+1

𝑛 𝑛+1
𝐌𝑒1𝑛

(1)
+ 𝑗𝐍𝑜1𝑛

(1)
,

Scattered field: 𝐄𝑠 = σ𝑛=1
∞ 𝐸𝑛 𝑗𝑎𝑛𝐍𝑒1𝑛

(3)
− 𝑏𝑛𝐌𝑜1𝑛

(3)
, 𝐇𝑠 =

𝑘2

𝜔𝜇2
σ𝑛=1
∞ 𝐸𝑛 𝑗𝑏𝑛𝐍𝑜1𝑛

(3)
+ 𝑎𝑛𝐌𝑒1𝑛

(3)
,

Local core: 𝐄0 = 𝐄0
𝑇 = σ𝑛=1

∞ 𝐸𝑛 𝑐𝑛𝐌𝑜1𝑛
(1)

− 𝑗𝑑𝑛𝐍𝑒1𝑛
(1)

, 𝐇0 =
−𝑘0

𝜔𝜇0
σ𝑛=1
∞ 𝐸𝑛 𝑑𝑛𝐌𝑒1𝑛

(1)
+ 𝑗𝑐𝑛𝐍𝑜1𝑛

(1)
,

Nonlocal core: 𝐄0 = ห𝐄0
𝑇
𝑘0
𝑇 + ห𝐄0

𝐿
𝑘0
𝐿 , 𝐄0

𝐿 = −𝑗 σ𝑛=1
∞ 𝑓𝑛𝐋𝑒1𝑛

1
, 𝐇0 does not change curl𝐄𝜁

𝐿 = 0 ,

Local shell: 𝐄1 = 𝐄1
𝑇 = σ𝑛=1

∞ Α𝑛𝐌𝑜1𝑛
(1)

− 𝑗Β𝑛𝐍𝑒1𝑛
1

+ Γ𝑛𝐌𝑜1𝑛
(2)

− 𝑗Κ𝑛𝐍𝑒1𝑛
(2)

, 𝐇1 =
−𝑘1

𝜔𝜇1
curl 𝐄1 ,

Nonlocal shell: 𝐄1 = ห𝐄1
𝑇
𝑘1
𝑇 + ห𝐄1

𝐿
𝑘1
𝐿 , 𝐄1

𝐿 = −𝑗σ𝑛=1
∞ ℎ𝑛𝐋𝑒1𝑛

1
+ 𝑞𝑛𝐋𝑒1𝑛

2
, 𝐇1 does not change.

Complete set of the spherical 

vector wave functions (SVWFs)

𝜓
𝑜
𝑒𝑚𝑛
(𝑖)

= 𝑧𝑛
(𝑖)

𝑘𝜁𝑟 𝑃𝑛
𝑚(𝑐𝑜𝑠𝜃) ቊ

cos𝑚𝜑
sin𝑚𝜑

𝑧𝑛
(𝑖)
(𝑘𝑟) = 𝑗𝑛(𝑘𝑟), 𝑦𝑛(𝑘𝑟), ℎ𝑛

(1)
(𝑘𝑟), ℎ𝑛

(2)
(𝑘𝑟)

(3a)

(3b)

(3d)

(3e)

(3f)

Comment: Evaluation of the expansion coefficients can be

(a) fully symbolic (result: all coefficients are expressed as functions of the input parameters, i.e. 𝑎𝑛 = 𝑎𝑛(𝑟1, 𝑟2, 𝜆, 𝜀0, 𝜀1, 𝜀1
𝑇 , 𝜀2, … )); (b) partially symbolic (some input parameters are defined

numerically, i.e. 𝑟1 = 3𝑛𝑚); (c) MATLAB VPA – variable precision arithmetic (both input and output data are numeric). This enables additional flexibility in i.e. rounding error analysis. This

feature appears to be important due to the presence of rapidly oscillating longitudinal fields (𝑘𝐿 ≫ 𝑘𝑇) leading to computational issues in thin plasmonic layers [3,8].

BC = [subs(Eint(2),symVars.r,a) == subs(Eshl(2),symVars.r,a), ...

subs(Hint(2),symVars.r,a) == subs(Hshl(2),symVars.r,a), ...

subs(Eint(3),symVars.r,a) == subs(Eshl(3),symVars.r,a), ...

subs(Hint(3),symVars.r,a) == subs(Hshl(3),symVars.r,a), ...

subs(Eshl(2),symVars.r,b) == subs(Einc(2) + Esca(2),symVars.r,b), ...

subs(Hshl(2),symVars.r,b) == subs(Hinc(2) + Hsca(2),symVars.r,b), ...

subs(Eshl(3),symVars.r,b) == subs(Einc(3) + Esca(3),symVars.r,b), ...

subs(Hshl(3),symVars.r,b) == subs(Hinc(3) + Hsca(3),symVars.r,b)];

BC   = [subs(Eint(2),symVars.r,a) == subs(Eshl(2) + Enle(2) + Enls(2),symVars.r,a), ...

subs(Hint(2),symVars.r,a) == subs(Hshl(2) ,symVars.r,a), ...

subs(Eint(3),symVars.r,a) == subs(Eshl(3) + Enle(3) + Enls(3),symVars.r,a), ...

subs(Hint(3),symVars.r,a) == subs(Hshl(3) ,symVars.r,a), ...

subs(Eshl(2) + Enle(2) + Enls(2),symVars.r,b) == subs(Einc(2) + Esca(2) ,symVars.r,b), ...

subs(Hshl(2),symVars.r,b) == subs(Hinc(2) + Hsca(2) ,symVars.r,b), ...

subs(Eshl(3) + Enle(3) + Enls(3),symVars.r,b) == subs(Einc(3) + Esca(3) ,symVars.r,b), ...

subs(Hshl(3),symVars.r,b) == subs(Hinc(3) + Hsca(3) ,symVars.r,b), ...

epsi.*subs(Eint(1),symVars.r,a) == subs(Eshl(1) + Enle(1) + Enls(1),symVars.r,a).*epsL, ...

epsL.*subs(Eshl(1) + Enle(1) + Enls(1),symVars.r,b) == subs(Einc(1) + Esca(1)          ,symVars.r,b).*eps0];

BC = [ Eint(2) + Enle(2) == Einc(2) + Esca(2), ...

Hint(2) == Hinc(2) + Hsca(2), ...

Eint(3) + Enle(3) == Einc(3) + Esca(3), ...

Hint(3) == Hinc(3) + Hsca(3), ...

epsL.*(Eint(1) + Enle(1)) == (Einc(1) + Esca(1)).*eps0];

Fig. 2. Example of the boundary conditions input

data for HDT problem (2) and corresponding

solution (𝜎𝑒𝑥𝑡, 𝜎𝑠𝑐𝑎).

Fig. 3. Example of the boundary conditions

input data for scattering by homogeneous silver

sphere and demonstration of the GNOR solution

convergence to the LRA solution for large

particles. Symbols indicate reference data [3].

Local response approximation (LRA) Drude hydrodynamic theory (HDT) Convergence of GNOR to LRA

Longitudinal wavenumber: (𝑘𝐿)2=
𝜔2+𝑗𝛾𝜔− Τ𝜔𝑝

2 𝜀′

𝛽2+𝒹 𝛾+𝑗𝜔
, transversal wavenumber: (𝑘𝑇)2 = 𝑘2𝜀𝜇, 𝜎𝑠𝑐𝑎 =

2𝜋

𝑘2
σ𝑛=1
∞ 2𝑛 + 1 𝑎𝑛

2 + 𝑏𝑛
2 , 𝜎𝑒𝑥𝑡 =

2𝜋

𝑘2
σ𝑛−1
∞ (2𝑛 + 1)Re 𝑎𝑛 + 𝑏𝑛 .

https://github.com/ilopushenko/symMie
(currently upon request) 

https://github.com/ilopushenko/symMie
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