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Polarimetry with quantum light promises improved measurements for various scenar-

ios. However, fundamental understanding of quantum photonic state transport in complex,

real media and tools to interpret the state after interaction with the sample are still lacking.

Here, we theoretically and experimentally explore the evolution of polarization-entangled

states in a turbid medium on example of tissue phantoms. By elaborating mathematical

relationship between Wolf’s coherency matrix and density matrix, we introduce a versatile

framework describing the transfer of entangled photons in turbid environments with po-

larization tracking and resulting quantum state representation with the density operator.

Experimentally, we reveal a robust trend in the state evolution depending on the reduced

scattering coefficient of the medium. Our theoretical predictions correlate with experimen-

tal findings, while the model extends the study by photonic states with different degrees

of entanglement. The presented results pave the way for quantitative quantum photonic

sensing enabling applications ranging from biomedical diagnostics to remote sensing.
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Introduction

Media as diverse as atmospheric aerosols, particulate matter, and biological tissues can all be described

as scattering, or more generally, turbid. Optical characterization of such environments proved crucial for

free-space optical communication (1, 2), environmental monitoring (3, 4), and biomedical sensing (5, 6).

Often challenged by the high optical losses, sensing of such media by examining the polarization response

known as optical polarimetry (7) can be particularly advantageous. This technique provides insight into

the chirality, anisotropy, and morphology of the sample and is well-acknowledged for technical inspection,

biomedical diagnostics, and remote sensing (8–11).

The versatility of polarization-based sensing fundamentally relies on a deep understanding of light propa-

gation in complex scattering media, where classical optical polarimetry has provided crucial insights through

decades of research. It has been shown that different optical parameters describing the turbid medium – scat-

tering anisotropy factor, scattering coefficient, photon transport mean free path, and others (12–14) – can be

related to Stokes vector and degree of polarization (DoP) measurements (6,15,16). The latter can then be used

to reliably distinguish different scattering media under study, e.g. healthy tissue domains from the domains

affected by disease-related morphological changes (9). It has been also established that certain polarization

states preferentially survive multiple scattering events, a phenomenon known as polarization memory (12),

while others rapidly depolarize. For biological tissues exhibiting strong forward scattering (17), this effect has

enabled polarization-gating techniques that enhance imaging contrast and depth penetration (18). It has been

revealed, that the degree of polarization memory depends critically on the scattering properties of the sample

under study and choice of the polarization state for probing (12–14). For example, circular polarization retains

its memory longer in large-scatterer media because forward scattering weakly perturbs photon helicity, while

linear polarization rapidly decoheres due to phase scrambling between orthogonal components (19, 20). At

the same time, other structured degrees of freedom of light beyond polarization exhibit analogous mem-

ory effects, e.g. spatial, angular (21, 22), or correlations in the orbital angular momentum (OAM) (23, 24).

Building on these foundational insights, advancing a deeper understanding of the underlying mechanisms of

light–matter interactions in complex scattering media remains essential for appropriate selection of sensing

metrics, probing states, and consequently improving polarization-based sensing and imaging.

Motivated by the quest for improved performance of photonic sensing and imaging, employment of

quantum light has already enabled groundbreaking achievements such as sub-shot-noise imaging with two-

photon correlated states (25), superb phase measurement sensitivity with squeezed states (26), or imaging with

photons never interacting with the sample (27). Among developments toward quantum-enhanced polarimetry
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(28) one should mention, e.g., revisiting of quantum polarization theory (29–31), experimental realization

of nonlocal, or ghost, polarimetry (32, 33), and demonstration of sensitivity enhancement in measurements

with NOON states (34–36). Particularly attractive states are polarization-entangled photons, which find

extensive interest in quantum sensing and communication (37–39). Especially in the field of biomedical

diagnostics, such states hold potential benefits due to the possibility of entanglement preservation through

a scattering medium (40), deeper penetration of such states into a biological tissue (41), and quantitative

imaging of biological samples with polarization-entangled photons (37). Targeting at practice-oriented

solutions, scenarios with decreased number of measurements per sample appear promising. Sensing with

Bell states without full quantum process tomography (42) proved applicable to monolayer cell cultures (43),

diluted solutions of microorganisms (44), and morphological changes in brain tissue due to Alzheimer’s

disease (45,46), while holding the potential of enhanced precision of the measurement (47) and polarization-

based classification with only two coincidence measurements (48,49).

Despite recent advances, quantum polarimetry remains in the early stages of development. Achieving real-

world, quantitative diagnostics of complex samples — such as biomedical tissues or other turbid environments

— critically depends on a comprehensive understanding of the mechanisms governing the evolution of non-

classical light upon interaction with matter, which is yet to be achieved.

A fundamental understanding of how the parameters of non-classical states — most notably their degree

of entanglement — are influenced by the optical properties of the medium remains elusive. Moreover,

predictive models capable of describing the interaction of such states with complex scattering environments

are still lacking. At the same time, such knowledge is crucial for the informed selection of non-classical states

tailored to specific tissue types, for the unambiguous interpretation of measured state alterations in terms of

tissue optical properties, and for advancing quantitative quantum polarization–based sensing methodologies.

Given the broad use of polarization-entangled photons, exploring their behavior in complex media is of

particular significance (50–54). Predictive insight into how probing photonic states respond to the optical

characteristics of a sample is a prerequisite for defining optimal measurement configurations and establishing

reliable diagnostic metrics.

In response to the need for such understanding and development of appropriate predictive models,

in this work we focus on biomatter–light interaction and explore the evolution of polarization-entangled

photons propagating through a turbid medium. For experimental investigations we rely on the acknowledged

method of quantum state tomography (QST) (55) and analyze the changes of the Bell state after one

of the partner photons passes through tissue-mimicking phantoms used as test samples. The latter allow

controllable realization of turbid environments with adjustable scattering parameters and imitate closely the
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optical properties of real biomedical samples (56, 57). In particular, we reveal a clear dependency of the

quantum state on the scattering coefficient of the samples. In our theoretical studies, we target at fundamental

understanding, interpretation and prediction of the behavior of the probing quantum state upon interaction

with turbid samples. For this, we elaborate on the foundational mathematical relationship between Wolf’s

coherency matrix (58, 59) and the density matrix of the quantum state (55, 60). Our proposed treatment of

polarization-entangled states paves the way for application of the well-developed classical light scattering

approaches to scenarios involving entangled photon states, beginning with those where quantum interference

effects within one optical channel can be considered negligible. Particularly, for numerical experiments we

employ Monte Carlo (MC) modeling of the photon transfer in turbid media based on the radiative transfer

theory for photon propagation (61) and the Bethe-Salpeter equation for polarization state tracking of light

attenuated by the turbid medium (62–64). Hereby, we introduce a direct approach to evaluating Wolf’s

coherency matrix both for single photons and for photon ensembles (15). Our theoretical findings correlate

well with experimental observations while allowing to expand the analysis to diverse input states. We not only

confirm the clear dependency of the probing state evolution on the scattering properties of the samples, but

also reveal the robustness of such trend for different degrees of entanglement of the input state. This, in turn,

underscores the potential of quantum polarization-based sensing for quantitative diagnostics in applications

ranging from biomedical studies to quantum communication and remote sensing.

Results

In the current study, we consider the light-matter interaction scenario which is schematically visualized in

Figure 1. Two photons propagate in separate distant channels. Each photon is either in the horizontal |𝐻⟩ or

vertical |𝑉⟩ polarization state, which in terms of the appropriate creation operator 𝑎̂† acting on the vacuum

state |0⟩ can be defined as |𝐻⟩ = 𝑎̂
†
𝐻
|0⟩ and |𝑉⟩ = 𝑎̂

†
𝑉
|0⟩, correspondingly (59). One of the channels contains

a sample medium under study where scattering and attenuation of light occur, while another channel remains

undisturbed and no loss of photons or change of their state takes place. The photons may be entangled in

polarization, and thus the quantum state of the photon pair is evaluated via polarization QST, see “Materials

and Methods” section. As an example, we focus on a Bell state in the form 1/
√

2 ( |𝐻𝑉⟩ + |𝑉𝐻⟩)). For the

latter, the described scenario means that both |𝐻⟩ and |𝑉⟩ photons can be observed in each channel with

equal probability. |𝐻𝑉⟩ state means that the horizontally polarized photon |𝐻⟩ propagates in the first channel

containing the scattering sample, while vertically polarized photon |𝑉⟩ propagates through the second,

reference channel (undisturbed channel, air environment). The |𝑉𝐻⟩ state is interpreted in a similar manner.
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Figure 1: Studied scenario of polarization-entangled photons scattering in a turbid medium. One of

the photons of polarization-entangled photon pair interacts with a turbid sample. Another photon remains

unchanged. Quarter-wave plates and linear polarizers enable polarization projective measurements. Coinci-

dences between the channels upon photon detection are used for two-photon state reconstruction (Materials

and Methods).

Theoretical description of multi-photon polarization states

For comprehensive treatment of scattering of polarization-entangled photonic states in complex media

consideration of both the classical framework for the description of polarized light (65) and the quantum

framework for the description of quantum photonic states (59) is required. In particular, we propose to

investigate the applicability of light scattering models well-developed within the classical electromagnetic

theory, to the case of entangled photon scattering. For this, we use Jones and Stokes approaches for polarized

light description and Dirac formalism for the description of photon states, bridging these two approaches via

concepts of coherency and density matrices. In the following, we use the Jones vector 𝜺 = (𝐸𝑥 , 𝐸𝑦)𝑇 which

fully defines the electric field vector E = (𝐸𝑥 , 𝐸𝑦 , 0)𝑇 and therefore allows to describe any polarization state

of the fully polarized light. Here and onward, 𝑇 corresponds to the matrix transpose. By fully polarized state

of light we explicitly mean that strict equality holds in the following relation between elements of Stokes

vector S = (𝑆0, 𝑆1, 𝑆2, 𝑆3)𝑇 : 𝑆2
0 ≥ 𝑆2

1 + 𝑆2
2 + 𝑆2

3. In turn, partially polarized state of light corresponds to the

inequality in this expression. Both fully and partially polarized light states can be equivalently described by

Wolf’s coherency matrix J (58).

The concept of the coherency matrix has been previously linked to the density matrix of a quantum state
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of a single photon (59). Stokes parameters, in turn, have been related both to the quantum state of a single

photon and generalized to multi-photon states (55). In this work, we further elaborate on this connection.

As a starting point, we emphasize that in the current context a pure single photon state can be equivalently

described both by the Jones vector and by the wavefunction of the quantum state:

𝜺 =
©­«
𝐸𝑥

𝐸𝑦

ª®¬ → ©­«
𝜓1

𝜓2

ª®¬ = |𝜓⟩ (1)

Here, |𝜓⟩ is a pure quantum polarization state of an individual photon. The important difference between the

two descriptions resides in the fact that the wavefunction of a quantum state describes probability amplitudes,

while the Jones vector describes the electric field. By using an arrow sign we point out that there exists a

surjective relation which connects electric field components to the corresponding probability amplitude

values. This connection is manifested through the relationship between coherency matrix J and density

matrix 𝜌̂ of the quantum state: 𝜌̂ = J/tr (J). Here, tr(·) corresponds to the matrix trace. The derivation of

this relationship is quite straightforward with employment of the Dirac ket |·⟩ and bra ⟨·| =
(
|·⟩𝑇

)∗ vectors

defined in the Hilbert and conjugated Hilbert spaces, respectively: coherency matrix of the fully polarized

light equals |𝜺⟩⟨𝜺 | (65), which fully coincides with the definition of a density matrix of the pure quantum

state |𝜓⟩⟨𝜓 | (60) except for the different scale of coherency matrix due to the presence of complex field

amplitudes.

The relationship between 𝜌̂ and J holds both for pure and mixed states (55,59). As a consequence, fully

polarized states of light can be described both by Jones vector and coherency matrix, which corresponds to

the pure quantum states of single photons that can be described both by wavefunction and density matrix. In

turn, partially polarized states of light can be described only by coherency matrix, and they correspond to

mixed quantum states which can be described only by means of the density matrix. Most importantly for the

current work, the outlined connection between 𝜌̂ and J enables to interpret MC models which address single

photon scattering (15) in terms of quantum states and probability amplitudes.

The Dirac bra-ket framework can be naturally expanded to describe state |Ψ⟩ = |𝜓 (1)⟩ ⊗ |𝜓 (2)⟩ =

|𝜓 (1)⟩|𝜓 (2)⟩ = |𝜓 (1)𝜓 (2)⟩ of a separable pair of photons (55), where |𝜓 (𝑖)⟩ =
(
𝜓
(𝑖)
1 , 𝜓

(𝑖)
2

)𝑇
corresponds to the

pure state of a single photon defined according to Eq. (1), and ⊗ is a tensor product. For polarization-entangled

photon pairs, the state of such system cannot be decomposed into states of separate photons. Pure two-

photon polarization-entangled states in the 𝐻-𝑉 basis are Bell states: |Φ±⟩ = 1
√

2
( |𝐻𝐻⟩ ± |𝑉𝑉⟩), |Ψ±⟩ =

1
√

2
( |𝐻𝑉⟩ ± |𝑉𝐻⟩). Specifically here, |𝐻⟩ = (1, 0)𝑇 and |𝑉⟩ = (0, 1)𝑇 . In this work, we propose to define

such pure states within the Jones-like formalism, allowing to bridge both approaches. In particular, for the
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Bell state |Ψ+⟩ we construct the following equivalent:

E =
1
√

2
(𝜺𝐻 ⊗ 𝜺𝑉 + 𝜺𝑉 ⊗ 𝜺𝐻) → |Ψ+⟩ = 1

√
2
( |𝐻𝑉⟩ + |𝑉𝐻⟩) (2)

Here, the Jones vectors of horizontally 𝜺𝐻 = (1, 0)𝑇 and vertically polarized light 𝜺𝑉 = (0, 1)𝑇 are used. In

this specific case, they are mathematically equal to |𝐻⟩ and |𝑉⟩ states, but in the general case they can differ

by a scale factor related to the light intensity. As in Eq. (1), the arrow denotes the correspondence between

the components of E and the respective elements of |Ψ+⟩ which ultimately obeys the indicated relationship

between 𝜌̂ and J. Vector E can be used to construct an equivalent to the coherency matrix for a pair of

photons |E⟩⟨E|, similarly to how expression |Ψ+⟩⟨Ψ+ | produces a density matrix of the corresponding Bell

state.

In the considered study scenario, one of the partner photons is scattered and therefore acquires a

new polarization state. Expressing the selected input Bell state in terms of the creation operators |Ψ+⟩ =

1/
√

2 ( |𝐻𝑉⟩ + |𝑉𝐻⟩) = 1/
√

2
(
𝑎̂
†
𝐻
|0⟩|𝑉⟩ + 𝑎̂

†
𝑉
|0⟩|𝐻⟩

)
allows to write down a representation for the evolved

scattered state (superscript 𝑆) in terms of probability amplitudes 𝛼𝐻 , 𝛼𝑉 , 𝛽𝐻 , 𝛽𝑉 obeying |𝛼𝐻 |2 + |𝛼𝑉 |2 =

1, |𝛽𝐻 |2 + |𝛽𝑉 |2 = 1:

|Ψ𝑆⟩ = 1
√

2

(
𝛼𝐻 𝑎̂

†
𝐻
|0⟩|𝑉⟩ + 𝛼𝑉 𝑎̂

†
𝑉
|0⟩|𝑉⟩ + 𝛽𝐻 𝑎̂

†
𝐻
|0⟩|𝐻⟩ + 𝛽𝑉 𝑎̂

†
𝑉
|0⟩|𝐻⟩

)
(3)

We do not use the creation operator to expand polarization states in the second channel, since this channel

does not contain scattering medium and the corresponding probability amplitudes are assumed not to change.

In terms of the proposed Jones-like formalism, this expression takes the form:

E𝑆 ∝ 𝔪𝜺𝐻 ⊗ 𝜺𝑉 + 𝔫𝜺𝑉 ⊗ 𝜺𝑉 + 𝔭𝜺𝐻 ⊗ 𝜺𝐻 + 𝔮𝜺𝑉 ⊗ 𝜺𝐻 → |Ψ𝑆⟩ (4)

It means that, once we are able to determine the polarization state of a scattered partner photon by means of,

e.g., Monte Carlo modeling, then, by conducting proper averaging procedures over the numerous simulated

polarization states, it is possible to extract the unknown coefficients 𝔪, 𝔫, 𝔭, 𝔮 and relate them to the proba-

bility amplitudes 𝛼𝐻 , 𝛼𝑉 , 𝛽𝐻 , 𝛽𝑉 . When there is no scattering medium in the sample channel, coefficients

become 𝔪 = 1, 𝔫 = 0, 𝔭 = 0, 𝔮 = 1 and expression (4) reduces to the Bell state |Ψ+⟩ accurately up to a

multiplier. It is important to note that if both partner photons are scattered inside the same turbid medium,

quantum correlations which can lead to quantum interference effects will have to be taken into account (54).

Employing the MC model to evaluate these coefficients is justified by its ability to reveal how the

parameters defining the turbid medium influence polarimetric measurement data (15, 66), in turn enabling

the solution of applied diagnostic tasks (6, 16). Details on the proposed generalized MC model, including

polarization state tracking and ensemble averaging, are provided in the “Materials and Methods” section.
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Effect of the turbid medium on the Bell state

To explore the scattering of polarization-entangled states in a turbid medium experimentally, we implemented

the scenario from Figure 1 in practice. As media under study, we aimed to use real complex samples that

would be relevant for biomatter-light interaction. For this reason, we selected tissue-mimicking phantoms

that can be manufactured with well-controllable predefined scattering properties. We performed QST both

before and after interaction of the probing Bell state with the samples. The reconstructed density matrices

𝜌̂ were analyzed as a whole to observe the global change of the probing state and to retrieve quantitative

parameters of the sample affected state. In particular, we considered concurrence 𝐶, linear entropy 𝐸 , purity

𝑃, and dephasing expressed as | 𝜌̂3,2 |. The scattering properties of the tissue phantoms have been selected

to represent a broad range of turbid media, from rather transparent to the opaque. For this, the samples

were manufactured with varying scattering coefficient 𝜇𝑠 and other parameters were kept the same. For

representation of samples’ scattering properties independent of the probed volume, in the following we

employ the characteristics of the effective thickness 𝑑/𝑙∗ defined by the actual thickness of the sample 𝑑 and

photon transport mean free path 𝑙∗ ∼ 𝜇−1
𝑠 (67). Further details on samples and experiment realization are

given in the “Materials and Methods” section.

A representative measurement outcome, intended to illustrate the obtained density matrix data used for

further analysis, is shown in Figure 2. It corresponds to the sample with the highest 𝑑/𝑙∗ measured within

this study (≈ 1.0) and whose optical properties are close to those exhibited by real biological tissues, e.g.,

human epidermis and dermis (68). In particular, interaction of the Bell state with the sample resulted in the

transfer of coherencies between |𝐻𝑉⟩ and |𝑉𝐻⟩ basis states (anti-diagonal elements of 𝜌̂) to the imaginary

part and decrease in their absolute values as a signature of state decoherence. We accompany the measured

matrix with its simulated counterpart which supports the experiment. Moreover, our approach allows to

interpret the observed effect as mainly guided by dephasing with a phase delay of 𝜆/14 arising between |𝑉⟩

and |𝐻⟩ photons. The latter can be explained by a combination of the impact of the birefringence of the

samples at the level negligible for classical characterization and the difference of optical paths for |𝑉⟩ and

|𝐻⟩ photons accumulated due to multiple scattering events. The dephasing of the state is more pronounced in

the simulated output state where also corner elements attain values slightly exceeding the noise level. They

attract probabilities from the core elements of 𝜌̂ which suggests the appearance of multiple superposition

states with different phase relations. In the Supplementary Material we provide additional explanations on

how our interpretations were obtained and the sample-related impact is separated from the phase delays that

might be induced by other optics in the light path.
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A Re( )  Im( )

B

Figure 2: Observation of the Bell state alteration due to propagation through a dense turbid medium.

Real and imaginary parts of the density matrix of the two-photon state after interaction of one of its partner

photons with ZnO-based tissue phantom of 𝑑/𝑙∗ ≈ 1.0 in one of the arms: A experimentally measured and B

computed with Eq. (12) with account for the initial state impurity. Simulation parameters are selected to be

identical to the measured sample’s properties. Theoretical estimate also includes a fit for phase delay equal

to 𝛿 = −𝜆/14. The obtained fidelity between the measured and simulated matrices is 91%.

For quantitative comparison (Figure 3), we represent the same density matrices reshaped as vectors and

supplemented with the error estimation for experimental data as per Ref. (55). Here, one can notice that the

relative amplitudes for the populations of |𝐻𝑉⟩ and |𝑉𝐻⟩ basis states (core diagonal elements, 𝜌̂(6) and

𝜌̂(11)) remain balanced in the simulated matrix in contrast to the experiment outcome. This can, though, be

attributed to the probable residual differences between the real probing state and its fitted representation used

in simulations (Materials and Methods). Nevertheless, as we show next, this has no significant impact on the

integral metrics of the quantum state which could be potentially used as diagnostics criteria or monitoring

parameters for quantitative sensing. The values of these metrics for both the measured and calculated state

lie in close vicinity for the provided example, as well as for other measured tissue phantoms. Further details

on the behavior of the density matrix elements discussed above, along with an interpretation of the observed

dynamics for the specific case studied here, are provided in the Supplementary Material (Figure S1). More

general relationships – particularly those connecting to classically observed polarization measures – could

potentially be revealed by exploring a broader range of probing states.
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Figure 3: Correlation between measured and modeled changes to the probing Bell state after interaction

with a turbid sample. Measured (barplot) and modeled (diamonds) density matrix elements from Figure 2

reshaped to vectors. Error bars represent the error estimation as per Ref. (55).

Figure 4 summarizes our systematic exploration of the dependency of the probing Bell state on the

scattering coefficient of the turbid medium. We demonstrate here dependencies of𝐶, 𝐸 , 𝑃, and | 𝜌̂3,2 | retrieved

from experimentally measured and simulated density matrices. In the numerical studies, we expanded the

range of the probing states beyond the experimentally realized conditions. The corresponding results are

shown with shaded stripes and provide an overview of the MC prediction of the output state dependent

on the initial quality (degree of entanglement) of the probing state. In particular, the results are shown for

probing states of concurrence 𝐶𝑝𝑟 = 1.00, 0.95, 0.90, 0.85, 0.80, 0.75, and 0.70. These states were generated

via decomposition into basis Bell states (Materials and Methods) with the probability weight factors for

|Ψ+⟩ and |Ψ−⟩ equal to: [1, 0], [39/40, 1/40], [19/20, 1/20], [37/40, 3/40], [9/10, 1/10], [7/8, 1/8] and

[17/20, 3/20]. Here, the probability factors for |Φ+⟩ and |Φ−⟩ have been assumed equal to zero.

In the experiments, the probing state has been prepared with concurrence (0.88±0.01). Such conditions

have been simulated assuming the probing state of 0.90, which was found to be fitting best to the experimental

data. The fidelities between the measured and simulated density matrices for all samples studied have been

obtained in the range from 91% to 98%. Considering the inevitable presence of experimental error and

minimal discrepancy between the practically generated probing state and its simulated counterpart, the

results demonstrate excellent agreement. For all studied metrics, which reflect both the overall properties of

the state (concurrence, entropy, purity) as well as direct monitoring of one of the core elements of the density

matrix (dephasing), the modeling and experiment correlate with high accuracy.
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Figure 4: Evolution of the polarization-entangled two-photon state due to interaction with a scattering

medium. Dependencies of the output state’s concurrence, linear entropy, purity, and dephasing vs the effective

thickness of the scattering medium 𝑑/𝑙∗. Experimentally measured points (diamonds,𝐶𝑝𝑟 = 0.88±0.01) with

error estimation (55) and simulated outcome with best fitting probing state (dashed line, 𝐶𝑝𝑟 = 0.90) for 𝑑/𝑙∗

= 0.003, 0.135, 0.287, 0.465, 0.733, and 1.002. Shaded stripes show simulation results beyond experimentally

realized conditions with different degree of entanglement of the initial probing state 𝐶𝑝𝑟= 1.0, 0.95, 0.90,

0.85, 0.80, 0.75, and 0.70.

Discussion

The presented results reveal a clear trend of the state evolution for slow loss of entanglement when one of the

partner photons passes through a scattering medium. Moreover, we show that this holds valid for different

degrees of entanglement of the initial state incident on the sample, as predicted with our proposed theoretical

approach. The non-ambiguous dependence of the entangled state on the scattering properties of the sample

– particularly the reduced scattering coefficient – and robustness of the trend to the initial quality of the

probing state underscore its diagnostic potential and showcases the monitoring of the state evolution as a

robust metric for prospective quantitative characterization of real complex media to be inspected or detected.

The minimal discrepancy between the simulated and experimentally reconstructed states in terms of

relative amplitudes for the populations of |𝐻𝑉⟩ and |𝑉𝐻⟩ basis states discussed in the previous section can

11Preprint downloaded from: https://ilopushenko.github.io Read at the publisher: https://doi.org/10.1002/lpor.202501172



be further improved by more precise matching of the simulated input state to the state actually generated in the

experiment. This, though, will require a more complex model of the utilized experimental arrangement and

we will address this point in our future studies, along with more detailed interpretation of the dynamics of the

specific density matrix elements. Nevertheless, the presented findings explicitly demonstrate the applicability

of entangled states for studying turbid media and confirm the applicability of classical scattering approaches

like MC to problems involving entangled photon states.

The parameters selected for the test set of samples experimentally measured within this study emphasize

the applicability of our proposed treatment of the entangled photon scattering for a wide range of applications.

On the one hand, we demonstrated the suitability of our polarization-based sensing approach using Bell states

for studying samples with scattering coefficients in the range characteristic for real biological tissues, e.g.,

human epidermis and dermis (68). Consistent with previous and recent studies (41,45,46), the entanglement

is preserved on a high level even for samples with the highest reduced scattering coefficient from the

test sample set. This makes the findings of this study particularly relevant for low-flux remote photonics

for biomedical diagnostics (36, 37, 47). On the other hand, samples from the test set with relatively low

scattering coefficients correspond to the properties of various atmospheric conditions, including air polluted

with particulate matter or containing water aerosols (4). This, in turn, highlights the significance of our

proposed method also for applications in precise remote environmental monitoring, optical communication

link maintenance, and reliable quantum optical data transmission (69,70).

The particular significance of this study for further development of quantum technologies lies in the in-

herent scalability of the introduced modeling approach to simulation of multi-photon problems. Numerically,

it is possible to introduce the same scattering medium in the second channel of the discussed experimental

scenario in a relatively straightforward way. With the cost of increased computational efforts, one can obtain

statistically significant amount of possible trajectories of the photons in both channels and for both |𝐻⟩ and

|𝑉⟩ states. Applying the analytical description of our model the prediction of the output state in this case

would similarly arrive at finding the unknown probability amplitudes. However, it would be necessary to

account here also for coherent interactions between the substates of the decomposition (54). In addition, the

introduced model can be expanded to multi-photon polarization-entangled states. Benefiting from the BSE

framework allowing for tracking different polarization states for each single trajectory of the MC photon

(Materials and Methods), we have shown the capabilities of the model on example of a two-photon Bell state

in the |𝐻⟩ and |𝑉⟩ basis. It is, though, possible to track also other types of initial polarization states, as well

as one can consider several spatial channels of photon propagation and not necessarily only two.

In summary, our experimental results reveal a robust dependence of polarization-entangled photons on
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the scattering properties of the propagation medium. Combined with our theoretical approach for modeling

the scattering of such states in turbid media, these findings deepen the fundamental understanding of

photon–medium interactions, enable accurate interpretation, and allow prediction of their outcomes. Beyond

advancing fundamental knowledge, our work lays the foundation for establishing optimal scenarios for

quantitative sensing with non-classical light, exploring the limits of quantum-enhanced polarization-based

sensing, and enabling a broad range of photonic applications that leverage emerging quantum technologies.

Materials and Methods

Samples

As samples of turbid medium with different scattering properties we used in-house manufactured tissue-

mimicking phantoms – polymer films with scattering centers (nanoparticles) homogeneously allocated within

their volume (57). Scattering properties of such phantoms are controlled by the material of scattering centers,

their size and distribution profile. For the reported studies, we manufactured a series of thin (𝑑 = 300 𝜇m thick)

tissue phantoms (20 mm × 70 mm) with similar refractive index 𝑛 = 1.47, low absorption coefficient 𝜇𝑎 ∼

0.1 mm−1, and forward scattering anisotropy factor 𝑔 ≈ 0.65, but with varying density of ZnO nanoparticles

acting as scattering centers. The latter resulted in different scattering coefficient 𝜇𝑠. To account for the impact

of 𝑔, we characterized samples with the reduced scattering coefficient 𝜇′𝑠 and the transport mean free path 𝑙∗,

which considering the low level of absorption of the samples can be related as 𝑙∗ = 1/𝜇′𝑠 = 𝜇−1
𝑠 (1 − 𝑔)−1 (67).

Actual values of 𝜇′𝑠 for the measured samples were 0.45, 0.96, 1.55, 2.44, and 3.34 mm−1. Hereby, the effective

thickness 𝑑/𝑙∗ of the samples, which allows for volume-independent scattering characterization, gradually

reaches 1.0, while the complete set of samples represents turbid media with scattering relatively low as for

polluted air (4) to high as for human tissue (68). For handling, each sample is mounted between two standard

glass microslides. As a reference sample, we use a polymer matrix without ZnO nanoparticles and thus

characterized by negligible scattering coefficient.

Probing state generation

The targeted probing quantum state is the Bell state in the form |Ψ+⟩ = 1/
√

2( |𝐻𝑉⟩ + |𝑉𝐻⟩). This state was

chosen as it represents one of the most established and widely utilized forms in studies of quantum-enhanced

photonic sensing and in quantum communication. It is generated with the source reported in Ref. (71) in

type-II phase matching configuration. The source employs two identical periodically-poled KTP (Potassium

Titanyl Phosphate) crystals, each serving for generation of a pair of orthogonally polarized photons within a
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type-II event of spontaneous parametric down-conversion (SPDC). These crystals are introduced with their

optical axes oriented orthogonally into a polarization Mach-Zehnder interferometer and the optical paths

of the generated photon pairs are matched to achieve indistinguishability (72). The wavelength-degenerate

pairs are created at 810 nm, exit the interferometer and the resultant biphoton state is characterized using

QST (55). The fidelity of the realized state with respect to the nominal Bell state is obtained at the level of

0.97 by proper control of the spatial and temporal walk-off between the beams (71,73). The described source

is omitted in Figure 1.

Measurement instrument

Experimental setup for quantum state characterization follows the conceptual visualization in Figure 1. Here,

each optical channel contains a polarization projector (or polarization state analyzer) and a fiber-coupled

single photon counting module (detector). The polarization projectors are realized with quarter-wave plates

(QWP) and linear polarizers (LP) and enable projection to horizontal |𝐻⟩, vertical |𝑉⟩, diagonal |𝐷⟩

(+45◦), antidiagonal |𝐴⟩ (-45◦), right- |𝑅⟩ and left- |𝐿⟩ circular basis states. For each of these projective

measurements, both QWP (with its fast axis) and LP (with its transmission axis) are oriented at appropriate

angles with respect to the global vertical direction. The transmitted photons are guided to the detector using

a single-mode fiber with numerical aperture of 0.13. The detectors in both channels are connected to a

time tagging device for counting the coincidence events. These correspond to the photon pairs reaching the

detectors within a narrow time window (coincidence window) which relates these photons to the same SPDC

event. Providing the comparable level of coincidences is counted for different independent polarization

bases, one can claim them entangled. The samples under study were introduced into one of the optical

channels (signal, or sample) without extra condenser or objective lens, so that samples are illuminated with

a collimated beam of approx. 1 mm. On the one hand, this allows to probe a relatively large area of the

homogeneous phantom and thus obtain an integral response from the sample and extra minimize the influence

of any contamination of the sample or localized artifacts. On the other hand, we thus ensure that all the

probing photons enter the turbid medium under study at normal incidence and the angular dependence of

the polarization effects, also in simulations, can be neglected. At the same time, we introduced an auxiliary

(the same for all samples) low-focusing lens between the phantom and polarization projector in the signal

channel to enhance the coupling of the scattered photons to the single-mode-fiber input of the detector. The

corresponding effective acceptance angle of the detection system (accounting for numerical aperture of the

fiber itself) is considered when modeling the experimental conditions with Monte Carlo approach.
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Measurement procedure, data acquisition and processing

To study the effect of the turbid samples on the entangled photons, we sequentially characterized the probing

state, output state after the photons in the signal channel are passing through the auxiliary lens only, and the

state carrying the information of both the lens and a sample. For this, we performed complete tomographic

reconstruction of each mentioned state via QST with 16 combinations of polarization projections and one

detector per channels as per Ref. (55). The latter included maximum likelihood estimation method (74) and

similar corrections as in Ref. (75).

The measurement procedure was automated using a custom-written MATLAB program for synchro-

nization of the movement of the rotational motors for QWPs and LPs in polarization projectors with the

acquisition of the data from the time tagging device. With this, the raw coincidence counts accumulated

for 10 s have been retrieved for each polarization projection combination for 3 ns coincidence window, in

a sequential manner. The raw data was then corrected for accidental counts, intensity drift, and detector

efficiency (74).

Decomposition of probing mixed states into basis Bell states

Mixed states can be treated as superposition of pure states in the Bell basis with the appropriate probability

amplitudes. The density matrix of a mixed state of polarization-entangled photon pair can be decomposed

into a combination of density matrices of Bell states, with weight factors indicating probabilities of these

states: 𝜌̂ = 𝑝1 |Ψ+⟩⟨Ψ+ | + 𝑝2 |Ψ−⟩⟨Ψ− | + 𝑝3 |Φ+⟩⟨Φ+ | + 𝑝4 |Φ−⟩⟨Φ− | (60). This expression is used to model

the experimentally realized probing state and to expand the range of probing states within the numerical

studies. In particular, the state with 𝜌̂ = 19/20|Ψ+⟩⟨Ψ+ | + 1/20|Ψ−⟩⟨Ψ− | with 𝐶 = 0.90 was found to be

best fitting to the experimental state. Notably, solely the transfer of the coherencies between the basis states

to the imaginary part of the density matrix does not impact the purity of the state (Supplementary Material).

Monte Carlo model

Within a turbid scattering medium, each photon can follow a plethora of different trajectories defined by the

material properties. We simulate these with the MC algorithm which combines aspects of the Bethe-Salpeter

equation (64) and radiative transfer theory (61), in contrast to quantum MC approaches (76,77) which perform

wave function sampling. The model is implemented as custom-written program in MATLAB environment

with CUDA-accelerated subroutines for efficient tracing of a large amount of photon trajectories. The model

operates with medium parameters 𝜇𝑠, 𝜇𝑎, 𝑔 which ultimately depend on the material’s internal structure via
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concepts of the scattering phase function, corresponding cross-sections and their averaged values obtained

by means of statistical electromagnetics (61). The algorithm for single photons and its physical background

has been extensively covered in our previous works (15, 62, 78, 79). Additional details are also provided

in Supplementary Material. Importantly, the photons within MC modeling should not be misinterpreted as

physical photons, but are rather considered as statistical particles obeying the radiative transfer equation,

which has the formal mathematical structure of a kinetic equation describing the particle transport. Thus in

this work, the photons within the MC model will be referred to as photon packets, and physical photons will

be referred to as photons.

The key steps of our model include: 1) the launch of a large amount (𝑁𝑖𝑛𝑐 > 109) of photon packets

from the light source; 2) interaction with the sample (see Figure 5 for artistic illustration of different possible

scattered trajectories); and 3) collecting the statistics from the 𝑁𝑝ℎ < 𝑁𝑖𝑛𝑐 photon packets which arrive

at the detector (15). Each photon packet is supplied with a statistical weight 𝑊 𝑗 , 𝑗 = [1...𝑁𝑝ℎ], which is

proportional to its intensity, and with initial polarization state. In this work, we simulate a uniform intensity

distribution, which implies a unit initial weight for each photon packet. In the course of propagation through

the turbid medium, the statistical weight of each packet is attenuated with respect to the Beer-Lambert

law along its trajectory. After launch, a photon packet begins propagation according to the defined initial

direction s, which is updated after each scattering event with respect to the scattering phase function, or after

an interface collision event with respect to Snell law. Photon packets satisfying the detection conditions are

contributing to the final statistics.

Tracing of probability amplitudes

We describe single photon packets by using the relationship (1) and track the evolution of the polarization

state of photon packets that undergo scattering and are later detected. For this, we introduce the three-

component polarization vector P which corresponds to the E field direction (62,78–80). This representation

allows to assign any input polarization state to the launched photon packet. Each photon packet trajectory,

which contains 𝑁 scattering events, at start is supplied with a P0 vector representing its initial polarization

state. In case of the 𝜺𝐻 state P𝐻
0 = (1, 0, 0)𝑇 , and for the 𝜺𝑉 state P𝑉

0 = (0, 1, 0)𝑇 . Then, within the iterative

solution to BSE (62), the evolution of this vector can be traced along the photon packet trajectory (15,78,80):

P𝑁 = Û𝑁 Û𝑁−1Û𝑁−2...Û1P0, Û𝑖 = −s𝑖 × [s𝑖 × P𝑖−1] (5)

Here, P𝑁 corresponds to the polarization state of the photon packet that has arrived on the detector and s𝑖

corresponds to the photon packet direction after the 𝑖-th scattering event. With P𝑁 value obtained, the final
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Figure 5: Schematic representation of possible trajectories of the photon packets passing through a

scattering medium. Notation |𝐻⟩ and |𝑉⟩ addresses the problem of entangled state modeling, where each

trajectory can be followed by a photon packet with both horizontal |𝐻⟩ and vertical |𝑉⟩ polarization. In turn,

𝛼𝐻 |𝐻⟩ + 𝛼𝑉 |𝑉⟩ and 𝛽𝐻 |𝐻⟩ + 𝛽𝑉 |𝑉⟩ correspond to the resultant polarization states for initial either |𝐻⟩

or |𝑉⟩ input states. 𝜇𝑠, 𝜇𝑎, 𝑔, and 𝑛 define the properties of the medium: scattering coefficient, absorption

coefficient, scattering anisotropy factor, and refractive index, correspondingly (67). One of the trajectories

features ladder diagrams for visualization of the iterative solution of the Bethe-Salpeter equation. Here, 𝐺

denotes the propagator of the Bethe-Salpeter equation and 𝑝 stands for the scattering phase function (adapted

from Ref. (62)).

polarization state of each photon packet can be reconstructed in the form of the Jones vector 𝜺 by switching to

a reference frame of the photon packet (59). It is important to note that individual photon packets remain fully

polarized after each scattering or interface interaction event (15). This fact enables application of the Jones

formalism to describe polarization state of the scattered photon packets. We also note that this approach works

within the Rayleigh-Gans-Debye approximation. The latter assumes that the medium turbidity is conditioned

by the presence of optically soft particles in it, which means that the refractive index of each scatterer is close

to that of the surrounding medium (78,80,81). By using J = |𝜺⟩⟨𝜺 | and 𝜌̂ = J/tr(J), for each photon packet

we can obtain the appropriate coherency and density matrices.

The goal of this study is modeling of polarization-entangled photons on the example of a Bell state |Ψ+⟩.

For this reason, we aim to trace possible evolution of both horizontal and vertical polarization states along

the same photon packet trajectory. We achieve this by assigning a pair of independent vectors P𝐻
0 and P𝑉

0 to

each photon packet and tracing them along the same trajectory. This plays an essential role for modeling the
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entangled photons’ behavior, since until the detection of one of the partner photons the polarization state of

both of them is not defined.

For each 𝑗-th photon packet launched with P𝐻
0

(
P𝑉

0
)

polarization, we denote Jones vector which cor-

responds to its final polarization state at the detector as X 𝑗

(
Y 𝑗

)
, and decompose it into the H-V basis

components with the weight factors 𝔪 𝑗 and 𝔫 𝑗 (𝔭 𝑗 and 𝔮 𝑗):

X 𝑗 = 𝔪 𝑗
©­«

1

0
ª®¬ + 𝔫 𝑗

©­«
0

1
ª®¬ , Y 𝑗 = 𝔭 𝑗

©­«
1

0
ª®¬ + 𝔮 𝑗

©­«
0

1
ª®¬ (6)

Hereby, our MC polarization tracing model (5) allows to simulate the behavior of Jones vector expressed

via coefficients 𝔪 𝑗 , 𝔫 𝑗 or 𝔭 𝑗 , 𝔮 𝑗 in the scattering medium for any 𝑗-th photon packet trajectory. Investigation

of the entangled photon pairs is then performed with respect to Eq. (4). In particular, we state that for the

considered scenario the unknown probability amplitudes can be extracted from the simulated polarization

states described by Eq. (6) by following the Jones-like vector E 𝑗 of a 𝑗-th photon packet pair defined in

Eq. (2) and assuming that the state of one of the partner photon packets has changed:

E𝑆
𝑗 ∝ X 𝑗 ⊗ 𝜺𝑉 + Y 𝑗 ⊗ 𝜺𝐻 = 𝔪 𝑗𝜺𝐻 ⊗ 𝜺𝑉 + 𝔫 𝑗𝜺𝑉 ⊗ 𝜺𝑉 + 𝔭 𝑗𝜺𝐻 ⊗ 𝜺𝐻 + 𝔮 𝑗𝜺𝑉 ⊗ 𝜺𝐻 =

=

©­­­­­­­«

0

𝔪 𝑗

0

𝔫 𝑗

ª®®®®®®®¬
+

©­­­­­­­«

𝔭 𝑗

0

𝔮 𝑗

0

ª®®®®®®®¬
=

©­­­­­­­«

𝔭 𝑗

𝔪 𝑗

𝔮 𝑗

𝔫 𝑗

ª®®®®®®®¬
→

©­­­­­­­«

𝛽𝐻 𝑗

𝛼𝐻 𝑗

𝛽𝑉 𝑗

𝛼𝑉 𝑗

ª®®®®®®®¬
∝ |Ψ𝑆

𝑗 ⟩
(7)

Here, we strongly rely on the following facts: each photon packet has a pure state after each scattering event,

and states X 𝑗 and Y 𝑗 are independently evaluated along the same photon packet trajectory. Expression (7)

allows us to construct an equivalent of Wolf’s coherency matrix for the pure state of the 𝑗-th photon packet

pair:

𝜌̂ 𝑗 = |E𝑆
𝑗 ⟩⟨E𝑆

𝑗 | → |Ψ𝑆
𝑗 ⟩⟨Ψ𝑆

𝑗 | (8)

To be interpreted as a density matrix, 𝜌̂ 𝑗 has to be divided by the trace tr( 𝜌̂ 𝑗). We again emphasize that if

both partner photons are scattered inside the same turbid medium, quantum correlations which can lead to

quantum interference effects will have to be taken into account.

Ensemble averaging

Expression (7) is valid for the pure state when a single MC trajectory for the photon packet in the sample

channel is considered. In the general case, an ensemble 𝑗 = [1...𝑁𝑝ℎ] of either photon packets or photon
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packet pairs is considered, resulting in a mixed state. To evaluate the final mixed states, we gather statistics

for a significant amount of the detected photon packet pairs and address the question of proper 𝜌̂ 𝑗 averaging

over the obtained ensemble.

Physically, partially polarized light originates from the field superposition of many light sources with

respect to the detector spectral and spatial resolution and finite integration time. In polarimetric biophotonic

applications, where individual photon packets with either X 𝑗 or Y 𝑗 detected state are separately considered,

one would commonly compute the Stokes vector or, equivalently, 6 intensity values for each photon packet

for horizontal (𝐼𝐻), vertical (𝐼𝑉 ), +45◦ or diagonal (𝐼𝐷), -45◦ or anti-diagonal (𝐼𝐴), right- (𝐼𝑅) and left-

(𝐼𝐿) circular polarization states and then average them over the whole ensemble of the detected photon

packets (15). In this work, this averaging can be performed without accounting for coherent effects:

𝐼𝜙 =
1

𝑁𝑝ℎ

𝑁𝑝ℎ∑︁
𝑗=1

𝐼𝜙 (X 𝑗) (9)

Here, 𝐼𝜙 (X 𝑗) is intensity projection of the 𝑗-th photon packet with polarization state X 𝑗 on the polarizer

state 𝜙, and 𝐼𝜙 is the ensemble averaged intensity projection. It is necessary to mention that each intensity

projection of the photon packet is computed as a product of the polarization state intensity projection ⟨𝜙|J|𝜙⟩

and two scalar values: statistical weight of the photon packet𝑊 and Rayleigh factor Γ𝑅 in the power of number

of scattering events 𝐼𝜙 (X 𝑗) = 𝑊 𝑗 ⟨𝜙|X 𝑗⟩⟨X 𝑗 |𝜙⟩Γ
𝑁 𝑗

𝑅
(79). Here, 𝑊 𝑗 is the detected statistical weight of the

𝑗-th photon packet which has propagated through the turbid sample, 𝑁 𝑗 denotes the amount of scattering

events along the 𝑗-the photon packet trajectory prior to the detection event, Γ𝑅 = 2/
(
1 + cos2 𝜃

)
is the

Rayleigh factor derived from the optical theorem in Born approximation, and cos2 𝜃 is the square cosine of

the scattering angle weighted by the single scattering cross-section (62,79).

In the case of two-photon packets, generalized Stokes parameters or the equivalent density matrix have

to be evaluated (55). As demonstrated above, in the experiment by a proper selection of the measurement

state set the final density matrix 𝜌̂ of the quantum state can be reconstructed (55, 74, 82). While direct

reproduction of QST can be implemented in the model, it appears to be redundant. Instead, we demonstrate

that it is possible to straightforwardly average an equivalent of Wolf’s coherency matrix 𝜌̂ 𝑗 defined according

to Eq. (8) over the ensemble of photon packet pairs thus obtaining a mixed state as a general result. For this

purpose, we introduce notation Φ for any allowable state of the photon packet pair and use the associativity

property for the product between a vector and the real scalar 𝑊 𝑗Γ
𝑁 𝑗

𝑅
:

𝐼Φ( 𝜌̂ 𝑗) = 𝑊 𝑗 ⟨Φ| 𝜌̂ 𝑗 |Φ⟩Γ𝑁 𝑗

𝑅
= ⟨Φ|𝑊 𝑗 𝜌̂ 𝑗Γ

𝑁 𝑗

𝑅
|Φ⟩ (10)

For the ensemble of photon packet pairs, observable intensity projection on the chosen state Φ is then
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obtained with the following averaging procedure:

𝐼Φ ∝
𝑁𝑝ℎ∑︁
𝑗=1

𝐼Φ( 𝜌̂ 𝑗) =
𝑁𝑝ℎ∑︁
𝑗=1

⟨Φ|𝑊 𝑗 𝜌̂ 𝑗Γ
𝑁 𝑗

𝑅
|Φ⟩ = ⟨Φ| ©­«

𝑁𝑝ℎ∑︁
𝑗=1

𝑊 𝑗 𝜌̂ 𝑗Γ
𝑁 𝑗

𝑅

ª®¬ |Φ⟩ = ⟨Φ| 𝜌̂avg |Φ⟩ (11)

Here, we have directly applied the summation over the ensemble of the detected photon packet pairs

𝑗 = [1...𝑁𝑝ℎ] to the 𝑊 𝑗 𝜌̂ 𝑗Γ
𝑁 𝑗

𝑅
term due to the distributivity of the matrix product with respect to the matrix

addition, allowing to introduce 𝜌̂avg: a counterpart of Wolf’s coherency matrix for an ensemble of photon

packet pairs. As opposed to 𝜌̂ 𝑗 , this averaged matrix in general corresponds to the mixed state.

With account for the relationship between coherency and density matrices, we obtain the final expression

for the simulated density matrix of the two-photon state which is mixed in the general case:

𝜌̂ = 𝜌̂avg/tr
(
𝜌̂avg

)
(12)

Such a matrix models the target final two-photon state and thus allows for analysis of the state evolution

due to scattering within the turbid medium. Relations (7)–(8) and (10)–(12) are the key expressions of the

generalized MC approach and are applied in our numerical experiments.
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Appearance of phase retardation effects in the density matrix of a Bell state

Density matrix of the pure Bell state |Ψ+⟩ is well-known to be a real 4×4 matrix with zero side elements and

four central elements equal to 0.5. This corresponds to the case of maximally entangled state characterized

by unit concurrence and zero linear entropy. One of the special cases important for our research is the impact

of a phase retarder on this density matrix. Namely, if a quarter-wave plate (QWP) is introduced into the signal

channel (Figure 1), we will expectedly observe a density matrix with the same characteristics and absolute

values of the matrix elements, but with nonzero imaginary parts of the anti-diagonal elements:

𝜌̂ (𝑄𝑊𝑃) =

©­­­­­­­«

0 0 0 0

0 0.5 −0.5𝔦 0

0 0.5𝔦 0.5 0

0 0 0 0

ª®®®®®®®¬
Here, 𝔦 is an imaginary unit. This matrix corresponds to the scenario when 𝜺𝐻-polarized photons pass through

the waveplate without change, while 𝜺𝑉 -polarized photons acquire phase shift 𝛿 = 𝜆/4 due to birefringence.

In terms of Jones calculus in our model, this is expressed as

X = 𝜺𝐻 =
©­«

1

0
ª®¬ , Y = 𝜺𝑉 exp (𝔦𝑘𝛿) = ©­«

0

𝔦

ª®¬
and 𝜌̂ (𝑄𝑊𝑃) can be immediately obtained from these expressions via Eq. (8) in the main body of the

manuscript. As expected, no change is observed in the diagonal elements of the matrix which correspond to

the probabilities of the |𝐻𝑉⟩ and |𝑉𝐻⟩ states while the coherencies between them (off-axis elements) are

transferred from the real to the imaginary part. The latter indicates the phase delay introduced by the QWP.

Understanding of this effect is important when interpreting the density matrices measured for turbid

samples under study. In the experiments (see Materials and Methods in the main text), an auxiliary low-
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focusing lens was found necessary to compensate for the decreased collection of the scattered photons.

We have, though, noticed that solely inserting a lens into the optical path alters the detected state. The

reconstructed density matrix acquires imaginary anti-diagonal elements, as if birefringence was present in

the system (see Figure S1A). Also, the absolute values of the diagonal elements cease to be equal (difference

on the level of 1.5%). This phenomenon could be explained by the fact that the lens influences both the

polarization state and path lengths of the incident light (83), as well as by the induced birefringence which

could arise from mechanical stresses caused by mounting the lens.

In order to account for the lens influence on the reconstructed two-photon state in numerical studies, we

fitted simulation parameters so that the computed density matrix matches to the one measured in presence of

the lens (see Figure S1B). The values of the defined fitting parameters suggest that the presence of the lens

in the optical path could result in slightly preferred transmission of the horizontal polarization and exhibit

extremely low (𝜆/26) level of birefringence (or phase delay due to other effects). The latter is not commonly

considered for most of the applications using classical states of light taking into account the negligibility

of the effect. However, this becomes critical when dealing with polarization-entangled photon pairs and

indicates potentially enhanced sensitivity of the measurement using such and further non-classical states of

A

B

Re(   ) Im(   )

Figure S1: Impact of auxiliary optics on the probing Bell state. A Measured and B simulated density

matrix of the state with lens but no turbid sample in the signal channel. Simulated matrix accounts for the

phase delay 𝛿 = −𝜆/26 which might be explained among others by the possible induced birefringence in the

auxiliary lens, as well as for the mix of two linearly independent Bell states (Materials and Methods).
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light (47). The discussed issue will be further investigated in our future studies while for the current work

we employ the fitted model of the lens.

Details on Monte Carlo implementation

The key steps of the modeling algorithm that we have implemented in the current study is shown in Figure S2.

It is already adapted to model the polarization-entangled photon pairs.

First, a large amount of photon packets (𝑁𝑖𝑛𝑐 > 109) is launched from the light source. We model the

uniform distribution of the photon packets within the cross-section of the beam incident on the sample,

and so we launch each ( 𝑗-th) of these packets with a unit statistical weight 𝑊 𝑗 . We also supply each

photon packet with a polarization vector P0: for the horizontally polarized state P0 = (1, 0, 0)𝑇 , and for

the vertically polarized state P0 = (0, 1, 0)𝑇 . Photon packets are launched from the source and propagate

without constraints toward the sample interface: in this work, all photon packets are assumed to be normally

incident at the interface, i.e., propagation direction vector s = (0, 0, 1)𝑇 for all packets. Expressions for the

polarization vector above are provided with account for the normal incidence. At the interface, all photon

packets undergo transmission with respect to the Snell and Fresnel laws (15).

Second, after interface interaction, a probabilistic value of the path length is determined for each photon

packet with respect to the Beer-Lambert law (67):

𝑙𝑖 = −ln𝜉/𝜇𝑠

Here, we employ a uniformly distributed random number 𝜉 ∈ (0, 1] and index of the scattering event

𝑖 = [1...𝑁], and assume that 𝜇𝑎 ≪ 𝜇𝑠. The obtained value 𝑙𝑖 indicates the distance, for which the photon

packet will propagate in the turbid medium until the next scattering event:

r𝑖 = r𝑖−1 + s𝑖𝑙𝑖

At the same time, statistical weight of the photon packet is attenuated as

𝑊𝑖 = 𝑊𝑖−1𝑒
−𝜇𝑎𝑙𝑖

After the scattering event, the new direction of photon packet propagation s𝑖+1 is randomly chosen with

respect to the medium-dependent scattering phase function, which in this case acts as a probability density

function. In particular, in this work we use the Henyey-Greenstein (HG) phase function (15)

𝑝𝐻𝐺 (cos 𝜃′) = 1
4𝜋

1 − 𝑔2(
1 + 𝑔2 − 2𝑔 cos 𝜃′

)3/2
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Figure S2: Conceptual flow chart of the implemented MC model.

and its inversion:

cos 𝜃′ =


1

2𝑔

(
1 + 𝑔2 −

[
1−𝑔2

1−𝑔+2𝑔𝜉

]2
)
, if 𝑔 > 0

2𝜉 − 1, if 𝑔 = 0

𝜑′ = 2𝜋𝜉

Here, 𝜃′ and 𝜑′ are the polar and azimuthal scattering angles in the photon packet reference frame.

We note that if the path of the photon packet crosses the medium boundary (either 𝑧 = 0 or 𝑧 = 𝑑,

where 𝑑 is the sample thickness), then instead of the scattering event an interface interaction (i.e., re-

flection/transmission) event is invoked, which modifies statistical weight with respect to Fresnel law and

propagation direction with respect to Snell law. Polarization state of the photon packet can also be updated

S4Preprint downloaded from: https://ilopushenko.github.io Read at the publisher: https://doi.org/10.1002/lpor.202501172



at this step. However, for various cases it appears possible to postpone the evaluation of the polarization state

and perform it only for the photon packets which arrived at the detector, leading, e.g., to Eq. (5) in the main

body of the paper. We note that this particular equation describes polarization tracing at scattering events

and does not account for possible polarization state changes caused by interface reflections.

Finally, photon packets propagate through the turbid medium 0 < 𝑧 < 𝑑 undergoing a limited amount 𝑁 of

scattering events, and the procedure outlined above repeats 𝑁 times. Criterion to terminate the propagation of

the photon packet originates from the Beer-Lambert law and is either limited by a large amount of scattering

events (e.g., 𝑁 > 103), or by the negligible statistical weight (e.g., 𝑊 𝑗 < 10−4) obtained due to attenuation

and reflection/transmission events. At each reflection/transmission event, part of the photon packet is always

assumed to be reflected and continues propagation in the sample, and the other part is assumed to escape from

the sample. For this part of the photon packet, detection conditions are checked. These involve either infinite

or restricted area of the detector, acceptance angle and other possible limitations (15). Those 𝑁𝑝ℎ photon

packets that arrive at the detector and satisfy the detection conditions finally contribute to the statistics.

Our polarization tracing procedure (defined as Eq. (5) in the main body of the manuscript) requires for

both statistical weight and power of the Rayleigh factor Γ𝑅 = 2/
(
1 + cos2 𝜃

)
of the photon packet to be

accounted for along with the detected polarization state P𝑁 in order to correctly determine its polarization-

projected intensity value (62, 78–80). Here, cos2 𝜃 is the square cosine of the scattering angle weighted by

the single scattering cross-section (79). For instance, in the case when 𝑗-photon packet is detected with

X 𝑗 = 𝔪 𝑗𝜺𝐻 + 𝔫 𝑗𝜺𝑉 state, corresponding 𝐻 and 𝑉 intensity projections can be evaluated as (15,79):

𝐼𝐻
(
X 𝑗

)
= 𝑊 𝑗𝔪

2
𝑗Γ

𝑁 𝑗

𝑅
, 𝐼𝑉

(
X 𝑗

)
= 𝑊 𝑗𝔫

2
𝑗Γ

𝑁 𝑗

𝑅
(S1)

Here, 𝑊 𝑗 is the detected statistical weight of the 𝑗-th photon packet which has propagated through the turbid

sample, 𝑁 𝑗 corresponds to the amount of scattering events along the 𝑗-the photon packet trajectory prior

to the detection event, and Γ𝑅 is derived from the optical theorem in Born approximation (62, 78, 80). We

note that in these particular expressions, elements of X 𝑗 are assumed to be real-valued, but in general Jones

formalism they can be complex-valued. In this case, square values 𝔪2, 𝔫2 will be replaced by 𝔪 ·𝔪∗, 𝔫 · 𝔫∗

products. With the above mentioned in mind, expressions which have the form of (S1) can be rewritten in

the Dirac bra-ket terms following the Eq. (10) in the main body of the paper. Correspondingly, averaging

procedure for these 𝑁𝑝ℎ < 𝑁𝑖𝑛𝑐 single photon packets can be written in exactly the same way as Eq. (11) in

the main body of the paper by replacing two-photon packet state Φ with the single photon packet state ϕ.

In our MC modeling, we employ the framework of iterative solution to Bethe-Salpeter equation (BSE

framework) and thus can track both horizontal 𝜺𝐻 and vertical 𝜺𝑉 states along any photon packet trajectory
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simultaneously and independently, while assuming Rayleigh-Gans-Debye approximation (80). In fact, this

means tracking both polarization states along the same trajectory, which, in general case, might change at

one of the later scattering events if the medium exhibits polarization selectivity. The latter is accounted for

via probabilistic nature of the photon packet trajectory sampling.

Relation of polarization vector to Jones vector

In this section, we provide details on the relation between Jones vector and polarization vector simulated by

the BSE-based MC. For this purpose, in addition to the so-called laboratory Cartesian coordinates (𝑥, 𝑦, 𝑧)

associated with the sample, we introduce local Cartesian coordinates (𝑥′, 𝑦′, 𝑧′), where 𝑧′ axis is always

collinear with the photon packet propagation direction s = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧). The (𝑥′, 𝑦′) plane in these prime

coordinates defines the reference plane of the photon packet.

Jones vector by definition is always expressed in the reference plane 𝜺 =
(
𝐸𝑥′ , 𝐸𝑦′

)𝑇 and corresponds

to the prime electric vector E′ = (𝐸𝑥′ , 𝐸𝑦′ , 0)𝑇 . When expressed in terms of the laboratory Cartesian

coordinates, the same electric vector can generally obtain the third component E = (𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧)𝑇 . This can

be demonstrated by utilizing the proper transition matrix:

P ∝ E =

©­­­­«
𝐸𝑥

𝐸𝑦

𝐸𝑧

ª®®®®¬
=

©­­­­«
cos 𝜃 cos 𝜑 − sin 𝜑 sin 𝜃 cos 𝜑

cos 𝜃 sin 𝜑 cos 𝜑 sin 𝜃 sin 𝜑

− sin 𝜃 0 cos 𝜃

ª®®®®¬
©­­­­«
𝐸𝑥′

𝐸𝑦′

0

ª®®®®¬
Here, 𝜃 = arccos (𝑠𝑧/|s|) is a polar angle of the photon packet direction vector s and 𝜑 is an azimuthal angle

of this vector expressed in terms of the spherical coordinate system which corresponds to the introduced

laboratory Cartesian coordinates. To track evolution of the polarization state of the photons experiencing

scattering, we have introduced vector P. We do so in the laboratory Cartesian coordinates, and with the

proportionality sign we emphasize that P vector corresponds to the E direction (15). It is necessary to

account for the statistical weight of the photon packet and for the power of the Rayleigh factor Γ𝑅 in order

to evaluate corresponding intensity projections.

Thereby, in this work we rely on the fact that it is always possible to interchange between (𝑥, 𝑦, 𝑧) and

(𝑥′, 𝑦′, 𝑧′) coordinate frames by using proper transition matrix. We point out that the connection between

the introduced E′ and its counterpart E is always known. This connection also enables to link Jones vector

𝜺 and electric field E vectors, and, correspondingly, 𝜺 and P vectors for each photon packet. Given that P is

always orthogonal to the propagation direction of the photon packet, Jones vector components can always be

reconstructed by using the reverse transition matrix (59).
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